百道网-中国专业的出版与数字出版产业门户
 您现在的位置:Fun书 > 深度学习
深度学习


深度学习

作  者:[美] Ian,Goodfellow,[加] Yoshua,Bengio,[加] Aaron ... 著

出 版 社:人民邮电出版社

出版时间:2017年08月

定  价:168.00

I S B N :9787115461476

所属分类: 计算机•网络  >  人工智能    

标  签:

[查看微博评论]

分享到:

TOP好评推荐   [展开]

TOP 20本书推荐  (全部16个)

书评书荐

TOP内容简介

    《深度学习》由全球知名的三位专家IanGoodfellow、YoshuaBengio和AaronCourville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。

 

    《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。


TOP作者简介

    IanGoodfellow,谷歌公司(Google)的研究科学家,2014年蒙特利尔大学机器学习博士。他的研究兴趣涵盖大多数深度学习主题,特别是生成模型以及机器学习的安全和隐私。IanGoodfellow在研究对抗样本方面是一位有影响力的早期研究者,他发明了生成式对抗网络,在深度学习领域贡献卓越。

 

    YoshuaBengio,蒙特利尔大学计算机科学与运筹学系(DIRO)的教授,蒙特利尔学习算法研究所(MILA)的负责人,CIFAR项目的共同负责人,加拿大统计学习算法研究主席。YoshuaBengio的主要研究目标是了解产生智力的学习原则。他还教授“机器学习”研究生课程(IFT6266),并培养了一大批研究生和博士后。

 

    AaronCourville,蒙特利尔大学计算机科学与运筹学系的助理教授,也是LISA实验室的成员。目前他的研究兴趣集中在发展深度学习模型和方法,特别是开发概率模型和新颖的推断方法。AaronCourville主要专注于计算机视觉应用,在其他领域,如自然语言处理、音频信号处理、语音理解和其他AI相关任务方面也有所研究。


中文版审校者简介

    张志华,北京大学数学科学学院统计学教授,北京大学大数据研究中心和北京大数据研究院数据科学教授,主要从事机器学习和应用统计学的教学与研究工作。

 

译者简介

    赵申剑,上海交通大学计算机系硕士研究生,研究方向为数值优化和自然语言处理。

    黎彧君,上海交通大学计算机系博士研究生,研究方向为数值优化和强化学习。

    符天凡,上海交通大学计算机系硕士研究生,研究方向为贝叶斯推断。

    李凯,上海交通大学计算机系博士研究生,研究方向为博弈论和强化学习。


TOP目录

第1章引言1

11本书面向的读者7

12深度学习的历史趋势8

121神经网络的众多名称和命运变迁8

122与日俱增的数据量12

123与日俱增的模型规模13

124与日俱增的精度、复杂度和对现实世界的冲击15

第1部分应用数学与机器学习基础

第2章线性代数19

21标量、向量、矩阵和张量19

22矩阵和向量相乘21

23单位矩阵和逆矩阵22

24线性相关和生成子空间23

25范数24

26特殊类型的矩阵和向量25

27特征分解26

28奇异值分解28

29Moore-Penrose伪逆28

210迹运算29

211行列式30

212实例:主成分分析30

第3章概率与信息论34

31为什么要使用概率34

32随机变量35

33概率分布36

331离散型变量和概率质量函数36

332连续型变量和概率密度函数36

34边缘概率37

35条件概率37

36条件概率的链式法则38

37独立性和条件独立性38

38期望、方差和协方差38

39常用概率分布39

391Bernoulli分布40

392Multinoulli分布40

393高斯分布40

394指数分布和Laplace分布41

395Dirac分布和经验分布42

396分布的混合42

310常用函数的有用性质43

311贝叶斯规则45

312连续型变量的技术细节45

313信息论47

314结构化概率模型49

第4章数值计算52

41上溢和下溢52

42病态条件53

43基于梯度的优化方法53

431梯度之上:Jacobian和Hessian矩阵56

44约束优化60

45实例:线性最小二乘61

第5章机器学习基础63

51学习算法63

511任务T63

512性能度量P66

513经验E66

514示例:线性回归68

52容量、过拟合和欠拟合70

521没有免费午餐定理73

522正则化74

53超参数和验证集76

531交叉验证76

54估计、偏差和方差77

541点估计77

542偏差78

543方差和标准差80

544权衡偏差和方差以最小化均方误差81

545一致性82

55最大似然估计82

551条件对数似然和均方误差84

552最大似然的性质84

56贝叶斯统计85

561最大后验(MAP)估计87

57监督学习算法88

571概率监督学习88

572支持向量机88

573其他简单的监督学习算法90

58无监督学习算法91

581主成分分析92

582k-均值聚类94

59随机梯度下降94

510构建机器学习算法96

511促使深度学习发展的挑战96

5111维数灾难97

5112局部不变性和平滑正则化97

5113流形学习99

第2部分深度网络:现代实践

第6章深度前馈网络105

61实例:学习XOR107

62基于梯度的学习110

621代价函数111

622输出单元113

63隐藏单元119

631整流线性单元及其扩展120

632logisticsigmoid与双曲正切函数121

633其他隐藏单元122

64架构设计123

641万能近似性质和深度123

642其他架构上的考虑126

65反向传播和其他的微分算法126

651计算图127

652微积分中的链式法则128

653递归地使用链式法则来实现反向传播128

654全连接MLP中的反向传播计算131

655符号到符号的导数131

656一般化的反向传播133

657实例:用于MLP训练的反向传播135

658复杂化137

659深度学习界以外的微分137

6510高阶微分138

66历史小记139

第7章深度学习中的正则化141

71参数范数惩罚142

711L2参数正则化142

712L1正则化144

72作为约束的范数惩罚146

73正则化和欠约束问题147

74数据集增强148

75噪声鲁棒性149

751向输出目标注入噪声150

76半监督学习150

77多任务学习150

78提前终止151

79参数绑定和参数共享156

791卷积神经网络156

710稀疏表示157

711Bagging和其他集成方法158

712Dropout159

713对抗训练165

714切面距离、正切传播和流形正切分类器167

第8章深度模型中的优化169

81学习和纯优化有什么不同169

811经验风险最小化169

812代理损失函数和提前终止170

813批量算法和小批量算法170

82神经网络优化中的挑战173

821病态173

822局部极小值174

823高原、鞍点和其他平坦区域175

824悬崖和梯度爆炸177

825长期依赖177

826非精确梯度178

827局部和全局结构间的弱对应178

828优化的理论限制179

83基本算法180

831随机梯度下降180

832动量181

833Nesterov动量183

84参数初始化策略184

85自适应学习率算法187

851AdaGrad187

852RMSProp188

853Adam189

854选择正确的优化算法190

86二阶近似方法190

861牛顿法190

862共轭梯度191

863BFGS193

87优化策略和元算法194

871批标准化194

872坐标下降196

873Polyak平均197

874监督预训练197

875设计有助于优化的模型199

876延拓法和课程学习199

第9章卷积网络201

91卷积运算201

92动机203

93池化207

94卷积与池化作为一种无限强的先验210

95基本卷积函数的变体211

96结构化输出218

97数据类型219

98高效的卷积算法220

99随机或无监督的特征220

910卷积网络的神经科学基础221

911卷积网络与深度学习的历史226

第10章序列建模:循环和递归网络227

101展开计算图228

102循环神经网络230

1021导师驱动过程和输出循环网络232

1022计算循环神经网络的梯度233

1023作为有向图模型的循环网络235

1024基于上下文的RNN序列建模237

103双向RNN239

104基于编码-解码的序列到序列架构240

105深度循环网络242

106递归神经网络243

107长期依赖的挑战244

108回声状态网络245

109渗漏单元和其他多时间尺度的策略247

1091时间维度的跳跃连接247

1092渗漏单元和一系列不同时间尺度247

1093删除连接248

1010长短期记忆和其他门控RNN248

10101LSTM248

10102其他门控RNN250

1011优化长期依赖251

10111截断梯度251

10112引导信息流的正则化252

1012外显记忆253

第11章实践方法论256

111性能度量256

112默认的基准模型258

113决定是否收集更多数据259

114选择超参数259

1141手动调整超参数259

1142自动超参数优化算法262

1143网格搜索262

1144随机搜索263

1145基于模型的超参数优化264

115调试策略264

116示例:多位数字识别267

第12章应用269

121大规模深度学习269

1211快速的CPU实现269

1212GPU实现269

1213大规模的分布式实现271

1214模型压缩271

1215动态结构272

1216深度网络的专用硬件实现273

122计算机视觉274

1221预处理275

1222数据集增强277

123语音识别278

124自然语言处理279

1241n-gram280

1242神经语言模型281

1243高维输出282

1244结合n-gram和神经语言模型286

1245神经机器翻译287

1246历史展望289

125其他应用290

1251推荐系统290

1252知识表示、推理和回答292

第3部分深度学习研究

第13章线性因子模型297

131概率PCA和因子分析297

132独立成分分析298

133慢特征分析300

134稀疏编码301

135PCA的流形解释304

第14章自编码器306

141欠完备自编码器306

142正则自编码器307

1421稀疏自编码器307

1422去噪自编码器309

1423惩罚导数作为正则309

143表示能力、层的大小和深度310

144随机编码器和解码器310

145去噪自编码器详解311

1451得分估计312

1452历史展望314

146使用自编码器学习流形314

147收缩自编码器317

148预测稀疏分解319

149自编码器的应用319

第15章表示学习321

151贪心逐层无监督预训练322

1511何时以及为何无监督预训练有效有效323

152迁移学习和领域自适应326

153半监督解释因果关系329

154分布式表示332

155得益于深度的指数增益336

156提供发现潜在原因的线索337

第16章深度学习中的结构化概率模型339

161非结构化建模的挑战339

162使用图描述模型结构342

1621有向模型342

1622无向模型344

1623配分函数345

1624基于能量的模型346

1625分离和d-分离347

1626在有向模型和无向模型中转换350

1627因子图352

163从图模型中采样353

164结构化建模的优势353

165学习依赖关系354

166推断和近似推断354

167结构化概率模型的深度学习方法355

1671实例:受限玻尔兹曼机356

第17章蒙特卡罗方法359

171采样和蒙特卡罗方法359

1711为什么需要采样359

1712蒙特卡罗采样的基础359

172重要采样360

173马尔可夫链蒙特卡罗方法362

174Gibbs采样365

175不同的峰值之间的混合挑战365

1751不同峰值之间通过回火来混合367

1752深度也许会有助于混合368

第18章直面配分函数369

181对数似然梯度369

182随机最大似然和对比散度370

183伪似然375

184得分匹配和比率匹配376

185去噪得分匹配378

186噪声对比估计378

187估计配分函数380

1871退火重要采样382

1872桥式采样384

第19章近似推断385

191把推断视作优化问题385

192期望最大化386

193最大后验推断和稀疏编码387

194变分推断和变分学习389

1941离散型潜变量390

1942变分法394

1943连续型潜变量396

1944学习和推断之间的相互作用397

195学成近似推断397

1951醒眠算法398

1952学成推断的其他形式398

第20章深度生成模型399

201玻尔兹曼机399

202受限玻尔兹曼机400

2021条件分布401

2022训练受限玻尔兹曼机402

203深度信念网络402

204深度玻尔兹曼机404

2041有趣的性质406

2042DBM均匀场推断406

2043DBM的参数学习408

2044逐层预训练408

2045联合训练深度玻尔兹曼机410

205实值数据上的玻尔兹曼机413

2051Gaussian-BernoulliRBM413

2052条件协方差的无向模型414

206卷积玻尔兹曼机417

207用于结构化或序列输出的玻尔兹曼机418

208其他玻尔兹曼机419

209通过随机操作的反向传播419

2091通过离散随机操作的反向传播420

2010有向生成网络422

20101sigmoid信念网络422

20102可微生成器网络423

20103变分自编码器425

20104生成式对抗网络427

20105生成矩匹配网络429

20106卷积生成网络430

20107自回归网络430

20108线性自回归网络430

20109神经自回归网络431

201010NADE432

2011从自编码器采样433

20111与任意去噪自编码器相关的马尔可夫链434

20112夹合与条件采样434

20113回退训练过程435

2012生成随机网络435

20121判别性GSN436

2013其他生成方案436

2014评估生成模型437

2015结论438

参考文献439

索引486


TOP书摘

译者序青山遮不住,毕竟东流去

  深度学习这个术语自2006年被正式提出后,在最近10年得到了巨大发展。它使人工智能(AI)产生了革命性的突破,让我们切实地领略到人工智能给人类生活带来改变的潜力。2016年12月,MIT出版社出版了IanGoodfellow、YoshuaBengio和AaronCourville三位学者撰写的《DeepLearning》一书。三位作者一直耕耘于机器学习领域的前沿,引领了深度学习的发展潮流,是深度学习众多方法的主要贡献者。该书正应其时,一经出版就风靡全球。

  该书包括3个部分,第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识。第2部分系统深入地讲解现今已成熟的深度学习方法和技术。第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。因此,该书适用于不同层次的读者。我本人在阅读该书时受到启发良多,大有裨益,并采用该书作为教材在北京大学讲授深度学习课程。

  这是一本涵盖深度学习技术细节的教科书,它告诉我们深度学习集技术、科学与艺术于一体,牵涉统计、优化、矩阵、算法、编程、分布式计算等多个领域。书中同时也蕴含了作者对深度学习的理解和思考,处处闪烁着深刻的思想,耐人回味。第1章关于深度学习的思想、历史发展等论述尤为透彻而精辟。

  作者在书中写到:“人工智能的真正挑战在于解决那些对人来说很容易执行、但很难形式化描述的任务,比如识别人们所说的话或图像中的脸。对于这些问题,我们人类往往可以凭直觉轻易地解决”。为了应对这些挑战,他们提出让计算机从经验中学习,并根据层次化的概念体系来理解世界,而每个概念通过与某些相对简单的概念之间的关系来定义。由此,作者给出了深度学习的定义:“层次化的概念让计算机构建较简单的概念来学习复杂概念。如果绘制出表示这些概念如何建立在彼此之上的一幅图,我们将得到一张‘深’(层次很多)的图。由此,我们称这种方法为AI深度学习(deeplearning)”。

  作者指出:“一般认为,到目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习以联结主义(connectionism)为代表,而从2006年开始,以深度学习之名复兴”。

  谈到深度学习与脑科学或者神经科学的关系,作者强调:“如今神经科学在深度学习研究中的作用被削弱,主要原因是我们根本没有足够的关于大脑的信息作为指导去使用它。要获得对被大脑实际使用算法的深刻理解,我们需要有能力同时监测(至少是)数千相连神经元的活动。我们不能够做到这一点,所以我们甚至连大脑最简单、最深入研究的部分都还远远没有理解”。值得注意的是,我国有些专家热衷倡导人工智能与脑科学或认知学科的交叉研究,推动国家在所谓的“类脑智能”等领域投入大量资源。且不论我国是否真有同时精通人工智能和脑科学或认知心理学的学者,至少对交叉领域,我们都应该怀着务实、理性的求是态度。唯有如此,我们才有可能在这一波人工智能发展浪潮中有所作为,而不是又成为一群观潮人。

  作者进一步指出:“媒体报道经常强调深度学习与大脑的相似性。的确,深度学习研究者比其他机器学习领域(如核方法或贝叶斯统计)的研究者更可能地引用大脑作为参考,但大家不应该认为深度学习在尝试模拟大脑。现代深度学习从许多领域获取灵感,特别是应用数学的基本内容如线性代数、概率论、信息论和数值优化。尽管一些深度学习的研究人员引用神经科学作为重要的灵感来源,然而其他学者完全不关心神经科学”。的确,对于广大青年学者和一线的工程师来说,我们是可以完全不用因为不懂神经(或脑)科学而对深度学习、人工智能踯躅不前。数学模型、计算方法和应用驱动才是我们研究人工智能的可行之道。深度学习和人工智能不是飘悬在我们头顶的框架,而是立足于我们脚下的技术。我们诚然可以从哲学层面或角度来欣赏科学与技术,但过度地从哲学层面来研究科学问题只会导致一些空洞的名词。

  关于人工神经网络在20世纪90年代中期的衰落,作者分析到:“基于神经网络和其他AI技术的创业公司开始寻求投资,其做法野心勃勃但不切实际。当AI研究不能实现这些不合理的期望时,投资者感到失望。同时,机器学习的其他领域取得了进步。比如,核方法和图模型都在很多重要任务上实现了很好的效果。这两个因素导致了神经网络热潮的第二次衰退,并一直持续到2007年”。“其兴也悖焉,其亡也忽焉”。这个教训也同样值得当今基于深度学习的创业界、工业界和学术界等警醒。

  我非常荣幸获得人民邮电出版社王峰松先生的邀请来负责该书的中文翻译。我是2016年7月收到王先生的邀请,但那时我正忙于找工作,无暇顾及。然而,当我和我的学生讨论翻译事宜时,他们一致认为这是一件非常有意义的事情,表达愿意来承担。译稿是由我的四位学生赵申剑、黎彧君、符天凡和李凯独立完成的。申剑和天凡是二年级的硕士生,而李凯和彧君则分别是二年级和三年级的直博生。虽然他们在机器学习领域都还是新人,其知识结构还不全面,但是他们热情高涨、勤于学习、工作专注、执行力极强。他们通过重现书中的算法代码和阅读相关文献来加强理解,在不到三个月的时间就拿出了译著的初稿,之后又经过自校对、交叉校对等环节力图使译著保持正确性和一致性。他们自我协调、主动揽责、相互谦让,他们的责任心和独立工作能力让我倍感欣慰,因而得以从容。

  由于我们无论是中文还是英文能力都深感有限,译文恐怕还是有些生硬,我们特别担心未能完整地传达出原作者的真实思想和观点。因此,我们强烈地建议有条件的读者去阅读英文原著,也非常期待大家继续指正译著,以便今后进一步修订完善。我恳请大家多给予4位译者以鼓励。请把你们对译著的批评留给我,这是我作为他们的导师必须要承担的,也是我对王峰松先生的信任做出的承诺。

  当初译稿基本完成时,我们决定把它公开在GitHub上,希望通过广大读者的参与来完善译稿。令人惊喜的是,有上百位热心读者给予了大量富有建设性的修改意见,其中有20多位热心读者直接帮助润色校对(详见中文版致谢名单)。可以说,这本译著是大家共同努力的结晶。这些读者来自一线的工程师和在校的学生,从中我领略到了他们对深度学习和机器学习领域的挚爱。更重要的是,我感受到了他们开放、合作和奉献的精神,而这也是推动人工智能发展不可或缺的。因此,我更加坚定地认为中国人工智能发展的希望在于年青学者,唯有他们才能让我国人工智能学科在世界有竞争力和影响力。

  江山代有人才出,各领风骚数十年!

  张志华代笔2017年5月12日于北大静园六院

 

TOP 其它信息

装  帧:平装

页  数:500页

开  本:16开

加载页面用时:78.1245
关闭